Using Theoretical Descriptors in Quantitative Structure-Activity Relationships: Gas Phase Acidity

George R. Famini, ${ }^{a}$ Benjamin C. Marquez ${ }^{\text {b }}$ and Leland Y. Wilson ${ }^{\text {*,b }}$

${ }^{a}$ U.S. Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD 21010, USA
${ }^{\text {b }}$ Department of Chemistry, La Sierra University, Riverside, CA 92515, USA

Abstract

The application of computational techniques to biology, chemistry and physics is growing rapidly. Quantitative structure-activity relationships (OSAR) have been used widely to relate biological activities as well as physicochemical properties to molecular structure features. A difficulty in this approach has been nonuniformity of parameter sets resulting in the inability to examine contributions across properties and data sets. Linear solvation energy relationships (LSER) developed by Kamlet and Taft successfully utilize a single set of parameters to correlate a wide range of biological, chemical and physical properties. We have replaced the empirical LSER solvatochromic parameters with theoretically determined parameters to permit greater ease in a priori property prediction. These TLSER descriptors have given good correlations and interpretations for some biological activities and physicochemical properties. This paper discusses the application of these descriptors to the gas phase acidity of some carboxylic acids, alcohols, silanols, anilines, hydrocarbons, and oximes. Good correlations and physical interpretations result.

Quantitative structure-activity (property) relationships (QSAR, QSPR) have been used to correlate molecular structural features of compounds with their known biological, chemical and physical properties. QSAR assumes that there is a quantitative relation between microscopic (molecular structural) features and a macroscopic (empirical) property of a compound. Originally, activity and QSAR referred to a biological property; however, the QSAR concepts apply equally well to physicochemical properties. Once a relation is found for a particular property, it can be used to predict that property for any compound from its molecular structure. ${ }^{1}$ One such equation is based on the linear free energy relationship (LFER). Burkhardt ${ }^{2}$ and Hammett ${ }^{3}$ reviewed the existence of LFERs in 1935; in 1937 Hammett ${ }^{4}$ proposed the equation that bears his name. A recent (1988) survey of LFER and a clear discussion of the background for its use is given by Exner. ${ }^{5}$

Linear Solvation Energy Relationships.-An enormous number of descriptors has been used by researchers to increase the ability to correlate biological, chemical and physical properties. One of the most successful sets has been used in the correlations of Hansch ${ }^{6}$ and Kamlet, Taft and co-workers ${ }^{7}$ who extended the LFER of earlier workers ${ }^{8}$ to involve solutesolvent interactions. ${ }^{9}$ This linear solvation energy relationship (LSER) has the general form shown in eqn. (1).

$$
\begin{align*}
\text { property }= & \text { bulk/cavity term }+ \text { dipolarity/polarizability } \\
& + \text { hydrogen bonding term(s) }+ \text { constant } \tag{1}
\end{align*}
$$

The property is often the logarithm of a measured quantity (involving solute-solvent interactions) which, in turn, can be related to a free energy consistent with the LFER concept. Kamlet, Taft and co-workers employed the empirically based solvatochromic (LSER) descriptor set for the terms in eqn. (1). For a given property of solutes in a given solvent, the bulk term uses the solute intrinsic volume, V_{1}, the dipolarity terms use the solute dipolarity parameter, π^{*}, and the solute polarizability correction, δ, while the hydrogen bonding terms employ a solute acidity descriptor, α, and a solute basicity descriptor, β. Early work used the molar volume, V_{m}, while V_{1} is computed. For a property of solvents with a given solute, the

Hildebrand solubility parameters, $\delta_{\mathrm{H}}{ }^{2}$, replaces the volume in the bulk term while the other parameters, now pertaining to the solvent, are retained. Subscripts 1 and 2 refer to solvent and solute respectively. Usually not all the terms in eqn. (1) are statistically significant.
These LSER terms can be interpreted in microscopic (energetic, bonding) and macroscopic (thermodynamic) terms. The bulk term is a measure of the energy needed to overcome cohesive solvent-solvent molecule interactions (endoergic) to form a cavity for the solute molecule. The dipolarity polarizability terms are measures of the energies of solute-solvent dipole and induced dipole interactions (exoergic) which contribute to solution formation. Hydrogen bonding terms measure the energy of interaction (exoergic) when a solutesolvent complex is formed. Respectively, hydrogen bond acceptor basicity (HBAB) and hydrogen bond donor acidity (HBDA) refer to accepting/donating a proton from/to a neighbour molecule in keeping with the Brønsted-Lowry acidbase definitions.
Thermodynamic interpretation can be inferred from work by Abraham and co-workers ${ }^{10}$ who correlated thermodynamic quantities for the process, X (water) $\longrightarrow \mathrm{X}$ (hexadecane), with the LSER descriptors. The volume term (bulk) is related to the difference in energy needed to create a solute molecule sized cavity in the two solvents; it is endoergic in each solvent. If the energy is greater in the water it will make the standard enthalpy change for the process more exothermic. The cavity formation seems to involve general dispersive forces also; these will be more exoergic and exothermic in a nonpolar solvent than in water, again contributing to a more exothermic overall change. The dipolarity and polarizability terms seem not to be as easily interpreted thermodynamically; however, greater dipolarity implies a greater tendency to form solute-water dipole-dipole interactions which are expected to be exoergic. The hydrogen bonding terms involve the difference between the exothermic solute-water interaction and the much less exothermic solutehexadecane interaction resulting in an overall endothermic enthalpy of transfer. However, the entropy change from the formation of solute-water bonds will be less than that for solute-hexadecane bonds resulting in an overall positive entropy change.

A strongpoint of these solvatochromic (LSER) descriptors is their very successful correlation of more than 200 biological, chemical and physical properties involving solute-solvent interactions for a large number of compounds. ${ }^{11}$ The coefficients of the descriptors in the correlation equation can also provide insight into the nature of the solute-solvent interactions as typified by the discussion in the previous paragraphs.
However, the LSER descriptors are somewhat limited in their ability to make a priori predictions because they are empirical. Although there are tables of LSER parameters and predictive relations to help in their estimation, LSER values for complex molecules are not as easily found. Hickey and Passino-Reader have provided 'rules of thumb' for LSER parameter estimation. ${ }^{12}$
Closely related to the LSER approach is a four-parameter correlation recently reported by Gajewski ${ }^{13}$ who indicates good success for solvent rate effects using the KOPMH (Kirkwood, Onsager, Parker, Marcus, Hildebrand) equation. The four solvent parameters are the Kirkwood-Onsager function, $(\varepsilon-1) /(2 \varepsilon+1),{ }^{14}$ the Hildebrand solvent cohesive energy density, $\left(\Delta H_{\text {vap }}-R T\right) / V_{\mathrm{m}}{ }^{15}$ (this is the $\delta_{\mathrm{H}}{ }^{2}$ mentioned earlier) and anion and cation relative stabilization parameters, α^{\prime} and β^{\prime}, respectively. For chloride and potassium ions, values for these last two parameters are derived from Parker's and Marcus' ${ }^{16}$ compilations of relative free energy of solvation in several solvents. For other solvents not covered by Parker and Marcus, α^{\prime} and β^{\prime} are estimated from the Kamlet-Taft (LSER) α and β.

Attempts to correlate computationally derived structural and electronic descriptors with the solvatochromic parameters have met with moderate degrees of success by Lewis. ${ }^{17}$ Recently Politzer has related the molecular electrostatic potential to the LSER dipolarity/polarizability index ${ }^{18}$ and solute hydrogen bonding descriptors. ${ }^{19}$

Theoretical Linear Solvation Energy Relationships.-In the past, theoretical chemistry has been used to provide descriptors for QSAR. Representative work is described by Loew and coworkers, ${ }^{20}$ Pedersen, ${ }^{21}$ and Chastrette and colleagues ${ }^{22}$ while Lewis ${ }^{23}$ gives a more recent summary of molecular orbital calculations applied to QSAR (MO-QSAR) for a variety of activities. Examples of theoretical descriptors include the molecular transform of Kier and Hall. ${ }^{24}$ Ford and Livingstone ${ }^{25}$ point out advantages of computationally derived descriptors over extra-thermodynamically derived descriptors such as pi and sigma. They are not restricted to closely related compounds as is often the case with group theoretical, topological and other variables. They describe clearly defined molecular properties making the interpretation of QSAR equations more straightforward. Furthermore, their values are easily obtained; no laboratory measurements are needed thus saving time, space, materials, equipment and alleviating safety (toxicity) and disposal concerns.
Based on the LSER philosophy and general structure a new, theoretical set of parameters for correlating a wide variety of properties has been developed. ${ }^{26}$ These theoretical linear solvation energy relationship (TLSER) descriptors have shown good correlations and physical interpretations for the following: five nonspecific toxicities; ${ }^{27}$ activities of some local anaesthetics and the molecular transform; ${ }^{28}$ opiate receptor activity of some fentanyl-like compounds; ${ }^{29}$ and six physicochemical properties: charcoal absorption; HPLC retention index; octanol-water partion coefficient; phosphonothiolate hydrolysis rate constant; aqueous acid equilibrium constant; and electronic absorption of some ylides. ${ }^{30}$ These TLSER parameters are determined solely from computational methods thus permitting a priori prediction of properties. The TLSER descriptors were developed to
correlate closely with the LSER descriptors; to give equations with correlation coefficients, R, and standard deviations, SD, close to those for LSER; and to be as widely applicable to solute-solvent interactions as the LSER set. Table 1 gives a summary of TLSER descriptors as used in this paper.

The TLSER bulk/steric term is described by the molecular van der Waals volume, V_{mc}, in units of 100 cubic angstroms. The dipolarity/polarizability term uses the polarizability index, π_{1}, obtained by dividing the polarizability volume by the molecular volume to produce a unitless, size independent quantity which indicates the ease with which the electron cloud may be moved or polarized. For example, aromatics and chlorine rank high while alkanes and fluorine rank low on the scale.
The hydrogen bond acceptor basicity (HBAB) is composed of covalent, ε_{b}, and electrostatic, q_{-}, basicity terms. Analogously, the hydrogen bond donor acidity (HBDA) is made up of covalent, ε_{a}, and electrostatic, q_{+}, acidity terms. The covalent HBAB parameter, ε_{b}, is the magnitude of the difference between the energy of the highest occupied molecular orbital (HOMO) of the solute and the lowest unoccupied molecular orbital (LUMO) of water. The result is divided by 100 for convenience in presentation and comparison of coefficients; the units are in hectoelectron volts (heV). Analogously, the covalent HBDA parameter, ε_{a}, is the magnitude of the difference between the energies of the LUMO of the solute and the HOMO of water again scaled like the covalent HBAB with the same units. The water energies are included for aesthetic reasons; the smaller these differences the greater is the ability to form a hydrogen bond with water. The electrostatic contribution to the HBAB is the magnitude of the largest negative formal charge, q_{-}, on an atom; units are atomic charge units (acu). The corresponding HBDA descriptor is the formal charge, q_{+}, on the most positively charged H atom (again in acu). The values of q_{-}and q_{+}are obtained by Mulliken population analysis.

Previous papers used ε_{b} and ε_{a}; however, increasing ε_{b} and ε_{a} mean decreasing basicity and acidity, respectively. Consequently, this paper, uses the transformation, $\varepsilon_{\mathrm{A} \text { or } \mathrm{B}}=$ $0.300-\varepsilon_{\mathrm{a} \text { orb } \mathrm{b}}$, so that ε_{A} and $\varepsilon_{\mathbf{B}}$ increase with increasing acidity or basicity; the 0.300 value was chosen to give values of similar size.
The generalized TSLER equation for solutes in a given solvent, is eqn. (2) where SSP represents a solute-solvent
$\mathbf{S S P}=\mathbf{S S P}_{0}+a V_{\mathrm{mc}}+b \pi_{1}+c \varepsilon_{\mathrm{B}}+d q_{-}+e \varepsilon_{\mathrm{A}}+f q_{+}$
interaction property; this is generally taken as the logarithm of a measured quantity. For a given property and set of compounds, the coefficients ($\mathbf{S S P}_{0}$ through f) are determined using multilinear regression analysis to fit the data. In most cases not all terms are significant.

The theoretical descriptors are from calculations that, strictly speaking, apply to an isolated molecule and, thus the gas phase. With this in mind, and noting the aqueus acidity correlations mentioned earlier, Professor R. W. Taft ${ }^{31}$ suggested that correlations of gas phase acidities and TLSER parameters be studied. Good TLSER correlations with properties involving solute-solvent interactions suggest that the gas phase parameters correlate well with properties effecting the solute-solvent system. In effect, the initial state (an isolated molecule) seems to influence strongly the final state (a solute-solvent complex). Related to this initial state influencing the property is the work of Siggel and co-workers ${ }^{32}$ who have shown that the gas phase acidities of p-nitrophenols relative to phenol are influenced by the charge distribution on the initial state, the molecule, and not by the resonance delocalization on the final state, the anion. Thus, it seemed reasonable that gas phase acidity might correlate well with TLSER descriptors.

Table 1 TLSER descriptors ${ }^{a}$

| Symbol | Name | Definition | Units | Meaning |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $V_{\mathbf{m c}}$ | molecular volume | molecular volume | $100 \AA^{3}$ | cavity $/$ steric |
| π_{1} | polarizability index | polarizability $/ V_{\mathrm{mc}}$ | none | polarizability |
| $\varepsilon_{\mathbf{B}}$ | 'covalent' HB basicity | $0.30-(\mid(E(\mathrm{~h})-E(1 w)) / 100)$ | heV | HBAB |
| q_{-} | 'electrostatic' HB basicity | maximum $\mid(-)$charge on an atom | acu | HBAB |
| $\varepsilon_{\mathbf{A}}$ | 'covalent' HB acidity | $0.30-(\mid(E(1)-E(h w)) / 100)$ | heV | HBDA |
| q_{+} | 'electrostatic' HB acidity | maximum $(+)$charge on an H atom | acu | HBDA |

${ }^{a} \AA=$ Angstrom; heV $=$ hectoelectronvolt; acu $=$ atomic charge unit; $\mathrm{HB}=$ hydrogen bond; $E(\mathrm{l})=$ LUMO energy; $E(\mathrm{~h})=$ HOMO energy; $E(\mathrm{lw})$ and $E(\mathrm{hw})$ refer to the $E($ LUMO $)$ and $E($ HOMO $)$ for water, respectively; | | indicate absolute magnitudes; HBAB = hydrogen bond acceptor basicity; HBDA $=$ hydrogen bond donor acidity.

Table 2 Correlations for individual sets (outliers kept) ${ }^{a} \Delta \mathrm{G}_{\mathbf{a}}{ }^{b}=a V_{\mathrm{mc}}+b \pi_{1}+c \varepsilon_{\mathrm{B}}+d q_{-}+e \varepsilon_{\mathrm{A}}+f q_{+}+g$

$\begin{aligned} & \text { Coeff. } \\ & \pm \\ & t \text {-stat. } \\ & P(2 \text {-tail }) \\ & \text { VIF } \end{aligned}$	a	b	c	d	e	f	g	n	\boldsymbol{R}	SD	F
Acids	$\begin{gathered} -17.6 \\ 8.1 \\ 2.16 \\ 0.042 \\ 1.29 \end{gathered}$	$\mathrm{n} / \mathrm{s}^{\text {c }}$	n/s	$\begin{aligned} & 676 \\ & 89 \\ & 7.53 \\ & 0.000 \\ & 1.25 \end{aligned}$	$\begin{gathered} -1654 \\ 359 \\ 4.60 \\ 0.000 \\ 1.20 \end{gathered}$	$\begin{gathered} -1710 \\ 233 \\ 7.34 \\ 0.000 \\ 1.31 \end{gathered}$	$\begin{gathered} 1751 \\ 81 \\ 21.6 \\ 0.000 \end{gathered}$	27	0.937	8.4	39
Alcohols	$\begin{gathered} -31.9 \\ 4.7 \\ 6.76 \\ 0.000 \\ 1.09 \end{gathered}$	n/s	n / s	$\begin{aligned} & 753 \\ & 81 \\ & 9.35 \\ & 0.000 \\ & 1.51 \end{aligned}$	n/s	$\begin{gathered} -2038 \\ 308 \\ 6.61 \\ 0.000 \\ 1.61 \end{gathered}$	$\begin{gathered} 1686 \\ 76 \\ 22.3 \\ 0.000 \end{gathered}$	21	0.975	7.2	107
Silanols	n/s	n/s	n / \mathbf{s}	$\begin{gathered} 147 \\ 24 \\ 6.06 \\ 0.000 \\ 1.28 \end{gathered}$	n / s	$\begin{gathered} -551 \\ 37 \\ 14.8 \\ 0.000 \\ 1.28 \end{gathered}$	$\begin{gathered} 367 \\ 14 \\ 25.9 \\ 0.000 \end{gathered}$	18	0.968	2.5	111
Anilines	n/s	n/s	n/s	n/s	$\begin{gathered} -998 \\ 187 \\ 5.35 \\ 0.000 \\ 1.00 \end{gathered}$	n/s	$\begin{gathered} 536 \\ 34 \\ 16.0 \\ 0.000 \end{gathered}$	13	0.850	2.1	29
Oximes	n/s	n/s	n/s	n/s	$\begin{gathered} -6011 \\ 1801 \\ 3.34 \\ 0.021 \\ 1.00 \end{gathered}$	n/s	$\begin{gathered} 2541 \\ 328 \\ 7.76 \\ 0.001 \end{gathered}$	7	0.831	39	11
Hydrocarbons	n/s	n/s	$\begin{gathered} -2011 \\ 166 \\ 12.1 \\ 0.000 \end{gathered}$	n/s	n / s	n/s	$\begin{array}{r} 318.4 \\ 23.3 \\ 13.7 \\ 0.000 \end{array}$	16	0.955	9.6	147
Small hydrocarbons	n/s	n/s	n / s	n / s	$\begin{gathered} -5065 \\ 1425 \\ 3.56 \\ 0.021 \\ 1.00 \end{gathered}$	n / s	$\begin{gathered} 2494 \\ 236 \\ 10.6 \\ 0.000 \end{gathered}$	8	0.823	25	13

${ }^{a}$ Acids, no outliers; alcohols, $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$; silanols, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}$; oximes, no outliers; hydrocarbons, thiophene; small hydrocarbons, ethene.
${ }^{b} \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta H_{\mathrm{a}}$ used for oximes and hydrocarbons, activation energy for hydrocarbons, see discussion. ${ }^{\mathrm{c}} \mathrm{n} / \mathrm{s}$, not significant at 0.95 level.

Gas Phase Acidity.-Gas phase acidity is defined in the following obvious manner.

$$
\mathrm{RH}(\mathrm{~g}) \longrightarrow \mathrm{H}^{+1}(\mathrm{~g})+\mathrm{R}^{-1}(\mathrm{~g}) ; \Delta H_{\mathrm{a}}
$$

Quantitative data is given in terms of the standard enthalpy change, ΔH_{a}, instead of the equilibrium constant. It is important to note that increasing enthalpy change means decreasing acidity. The ΔH_{a} values may be experimentally determined
through high pressure mass spectrometry (HPMS), ion cyclotron resonance (ICR) and flowing afterglow (FA) methods. The enthalpy change may also be calculated from empirical data using thermochemical cycles, bond dissociation energies, $D(\mathrm{R}-\mathrm{H})$, and electron affinities, $\mathrm{EA}(\mathrm{R}) .{ }^{33}$ Furthermore, the entropy change can be calculated with the partition function thus leading to the Gibbs free energy change, ΔG_{a}. The entropy changes for the different compounds are near $100 \mathrm{~J} \mathrm{~mol}^{-1}$ and do not change greatly.

Table 3 Correlations for individual sets (outliers dropped) $\Delta \mathrm{G}_{\mathrm{a}}=a V_{\mathrm{mc}}+b \pi_{1}+c \varepsilon_{\mathrm{B}}+d q_{-}+e \varepsilon_{\mathrm{A}}+f q_{+}+g$

```Coeff. \pm t-stat. P(2-tail) VIF```	$a$	$b$	$c$	$d$	$e$	$f$	$g$	$n$	$R$	SD	$F$
Acids	$\begin{gathered} -17.6 \\ 8.1 \\ 2.16 \\ 0.042 \\ 1.29 \end{gathered}$	n/s	n/s	$\begin{aligned} & 676 \\ & 89 \\ & 7.53 \\ & 0.000 \\ & 1.25 \end{aligned}$	$\begin{gathered} -1654 \\ 359 \\ 4.60 \\ 0.000 \\ 1.20 \end{gathered}$	$\begin{gathered} -1710 \\ 233 \\ 7.34 \\ 0.000 \\ 1.31 \end{gathered}$	$\begin{gathered} 1751 \\ 81 \\ 21.6 \\ 0.000 \end{gathered}$	27	0.937	8.4	39
Alcohols	$\begin{gathered} -33.2 \\ 2.4 \\ 14.1 \\ 0.000 \\ 1.08 \end{gathered}$	$\mathrm{n} / \mathrm{s}$	n/s	$\begin{gathered} 900 \\ 45 \\ 20.0 \\ 0.000 \\ 1.66 \end{gathered}$	$\mathrm{n} / \mathrm{s}$	$\begin{gathered} -1708 \\ 160 \\ 10.7 \\ 0.000 \\ 1.75 \end{gathered}$	$\begin{gathered} 1582 \\ 40 \\ 39.3 \\ 0.000 \end{gathered}$	20	0.994	3.6	448
Silanols	$\mathrm{n} / \mathrm{s}$	$n / \mathrm{s}$	$n / \mathrm{s}$	$\begin{gathered} 388 \\ 9.7 \\ 4.00 \\ 0.001 \\ 1.20 \end{gathered}$	n/s	$\begin{gathered} -2271 \\ 115 \\ 19.8 \\ 0.000 \\ 1.20 \end{gathered}$	$\begin{gathered} 1678 \\ 58 \\ 44.6 \\ 0.000 \end{gathered}$	17	0.983	7.7	206
Anilines	$\mathrm{n} / \mathrm{s}$	n/s	$n / \mathrm{s}$	$\mathrm{n} / \mathrm{s}$	$\begin{gathered} -998 \\ 187 \\ 5.35 \\ 0.000 \\ 1.00 \end{gathered}$	$n / \mathbf{s}$	$\begin{gathered} 536 \\ 34 \\ 16.0 \\ 0.000 \end{gathered}$	13	0.850	2.1	29
Oximes	n/s	n/s	$\mathrm{n} / \mathrm{s}$	$\mathrm{n} / \mathrm{s}$	$\begin{gathered} -6011 \\ 1801 \\ 3.34 \\ 0.021 \\ 1.00 \end{gathered}$	n/s	$\begin{gathered} 2541 \\ 328 \\ 7.76 \\ 0.001 \end{gathered}$	7	0.831	39	11
Hydrocarbons	n/s	n/s	$\begin{gathered} -1197 \\ 226 \\ 5.29 \\ 0.000 \\ 3.78 \end{gathered}$	$\mathrm{n} / \mathrm{s}$	$\begin{gathered} -871.6 \\ 167 \\ 4.23 \\ 0.001 \\ 3.78 \end{gathered}$	n/s	$\begin{aligned} & 342.3 \\ & 17.1 \\ & 20.0 \\ & 0.000 \end{aligned}$	15	0.982	6.5	159
Small hydrocarbons	n/s	n/s	$\mathrm{n} / \mathrm{s}$	$\mathrm{n} / \mathrm{s}$	$\begin{gathered} -4950 \\ 460 \\ 10.8 \\ 0.000 \\ 1.00 \end{gathered}$	n/s	$\begin{gathered} 2467 \\ 76 \\ 32.4 \\ 0.000 \end{gathered}$	7	0.979	8.0	116

The $\Delta H_{\mathrm{a}}$ and $\Delta G_{\mathrm{a}}$ values are capable of being determined with four figure precision. Many data analysed by QSAR methods are reliable to two or three digits only.

Molecular computations also can produce $\Delta H_{\mathrm{a}}$. Examples include $a b$ initio calculations: (also MNDO) for nine small molecules of the type, $\mathrm{XH}_{n}$, by Gordon and co-workers; ${ }^{34}$ at G2 level for 23 small molecules by Smith and Radom; ${ }^{35}$ for four $\alpha$-ketoaldoximes by Bouchoux and colleagues; ${ }^{36}$ and 12 small allyls, ethenes and cyclopropanes by Dahlke and Kass. ${ }^{37}$ There is very good agreement with experiment and theory.

## Procedure

This study applies the TLSER descriptors to the gas phase acidity for some sets of carboxylic acids, ${ }^{38}$ alcohols and anilines, ${ }^{39}$ silanols, ${ }^{40}$ hydrocarbons, ${ }^{33}$ oximes ${ }^{36}$ and small, unsaturated and cyclic hydrocarbons. ${ }^{37}$ Experimental data was selected from the compilation of Lias and co-workers ${ }^{41}$ and the previous references.

Molecular geometries were optimized and TLSER descriptors were calculated using the MNDO algorithm contained in MOPAC. ${ }^{42,43}$ The molecular volume for the optimized geometry was determined using the algorithm of Hopfinger. ${ }^{44}$ The in house developed molecular modelling package,

MMADS, was used to construct and view all molecular structures. ${ }^{45}$ Multilinear regression analysis [using MYSTAT (Systat, Evanston, II, USA)] was used to obtain the coefficients in the correlation equation.

The correlation equations were selected based on the coefficients being significant at the 0.95 level ('large' $t$-statistic) or higher, the correlation coefficient, $R$, as large as possible, small cross correlation [small variance inflation factor (VIF)] and a minimum number of outliers. The VIF is defined as $1 /\left(1-R^{2}\right)$ where $R$ is the correlation coefficient of one variable against the others; small (closer to one) values imply small cross correlation. ${ }^{46}$ Outliers were taken as compounds whose calculated values were three or more standard deviations from the mean.

## Results

Tables 2, 3 and 4 summarize the correlation equations. Each coefficient is accompanied by its standard error ( $\pm$ ), $t$-statistic ( $t$-stat.), 2-tail probability $P(2$-tail) and the variance inflation factor (VIF) to indicate the quality of the 'fit'. There is some redundancy since small standard error accompanies a large $t$ statistic and small probability.

Tables 2 and 3 are for the individual classes of compounds:

Table 4 Correlations for some continued sets (outliers dropped) $\Delta \Delta \mathrm{G}_{\mathrm{a}}=a V_{\mathrm{mc}}+b \pi_{1}+c \varepsilon_{\mathrm{B}}+d q_{-}+e \varepsilon_{\mathrm{A}}+f q_{+}+g$

```Coeff. \pm t-stat. P(2-tail) VIF```	$a$	$b$	$c$	$d$	$e$	$f$	$g$	$n$	$R$	SD	$F$
Acids + alcohols	$\begin{gathered} -24.14 \\ 4.31 \\ 5.60 \\ 0.000 \\ 1.22 \end{gathered}$	n/s	n/s	$\begin{gathered} 366.7 \\ 52.8 \\ 6.94 \\ 0.000 \\ 1.79 \end{gathered}$	$\begin{gathered} -528.7 \\ 196.4 \\ 2.69 \\ 0.010 \\ 5.65 \end{gathered}$	$\begin{gathered} -3548 \\ 174 \\ 20.4 \\ 0.000 \\ 7.87 \end{gathered}$	$\begin{array}{r} 2155 \\ 18 \\ 119 \\ 0.000 \end{array}$	46	0.994	7.7	806
Acids + alcohols	$\begin{gathered} -27.28 \\ 4.45 \\ 6.13 \\ 0.000 \\ 1.13 \end{gathered}$	n/s	n/s	$\begin{aligned} & 429.1 \\ & 50.9 \\ & 8.43 \\ & 0.000 \\ & 1.44 \end{aligned}$	n/s	$\begin{gathered} -3967 \\ 84 \\ 47.2 \\ 0.000 \\ 1.60 \end{gathered}$	$\begin{array}{r} 2135 \\ 18 \\ 120 \\ 0.000 \end{array}$	46	0.993	8.3	933
Acids + alcohols + silanols	n/s	n/s	n/s	$\begin{aligned} & 67.32 \\ & 11.09 \\ & 6.07 \\ & 0.000 \\ & 1.15 \end{aligned}$	$\begin{gathered} -1502 \\ 186 \\ 8.09 \\ 0.000 \\ 2.71 \end{gathered}$	$\begin{gathered} -2407 \\ 142 \\ 17.0 \\ 0.000 \\ 2.88 \end{gathered}$	$\begin{array}{r} 2162 \\ 19 \\ 113 \\ 0.000 \end{array}$	60	0.982	11	515
Acids + alcohols + anilines	n / \mathbf{s}	n/s	$\begin{gathered} 1087 \\ 264 \\ 4.11 \\ 0.000 \\ 3.54 \end{gathered}$	n/s	$\begin{gathered} -3551 \\ 127 \\ 28.0 \\ 0.000 \\ 1.47 \end{gathered}$	$\begin{gathered} -856.0 \\ 61.7 \\ 13.9 \\ 0.000 \\ 2.88 \end{gathered}$	$\begin{array}{r} 2059 \\ 39 \\ 39.2 \\ 0.000 \end{array}$	59	0.983	11	541
Alcohols + silanols + anilines	n/s	$\begin{gathered} 841.3 \\ 141.7 \\ 5.94 \\ 0.000 \\ 3.01 \end{gathered}$	n/s	n/s	$\begin{gathered} -3019 \\ 118 \\ 25.6 \\ 0.000 \\ 1.54 \end{gathered}$	$\begin{gathered} -631.3 \\ 55.0 \\ 11.5 \\ 0.000 \\ 2.38 \end{gathered}$	$\begin{array}{r} 2004 \\ 24 \\ 83.0 \\ 0.000 \end{array}$	46	0.976	9.9	282
Acids + alcohols + silanols + anilines	n/s	n/s	$\begin{gathered} 1160 \\ 226 \\ 5.14 \\ 0.000 \\ 2.59 \end{gathered}$	n/s	$\begin{gathered} -3439 \\ 128 \\ 26.9 \\ 0.000 \\ 1.30 \end{gathered}$	$\begin{gathered} -835.6 \\ 57.4 \\ 14.6 \\ 0.000 \\ 2.09 \end{gathered}$	$\begin{array}{r} 2027 \\ 36 \\ 55.9 \\ 0.000 \end{array}$	72	0.975	13	432
Acids + alcohols + silanols + anilines	n/s	$\begin{gathered} 903.8 \\ 195.8 \\ 4.62 \\ 0.000 \\ 3.08 \end{gathered}$	n/s	$\begin{gathered} 67.34 \\ 15.59 \\ 4.32 \\ 0.000 \\ 1.83 \end{gathered}$	$\begin{gathered} -3372 \\ 155 \\ 21.7 \\ 0.000 \\ 1.62 \end{gathered}$	$\begin{gathered} -950.8 \\ 59.3 \\ 16.0 \\ 0.000 \\ 1.91 \end{gathered}$	$\begin{array}{r} 2081 \\ 26 \\ 79.9 \\ 0.000 \end{array}$	74	0.970	14	271

${ }^{a}$ For a list of outliers, see Table 7.
acids, alcohols, silanols, anilines, oximes, hydrocarbons and some small hydrocarbons made up of propenes, ethenes and cyclopropanes. Table 2 includes all compounds while Table 3 has the outliers removed. Both tables were included for purposes of comparison. Table 4 contains equations for combined classes of acids, alchols, silanols and anilines; the outliers were removed. The first two rows (both acids and alcohols combined) are included for comparison with the individual acid and alcohol sets. The last two rows, each for the combined acids, alcohols, anilines, and silanols were included for comparison. Table 5 contains the TLSER descriptors for compounds used in Table 4 while Table 6 contains the experimental, calculated and residual acidity measure values for the 72 compound case of these acids, alcohols, anilines and silanols. Table 7 lists the outliers for the compounds sets in Table 4. Table 8 contains the hydrocarbons, oximes and small hydrocarbons along with their descriptors. There are 108 compounds in all.
Since most of the experimental parameters are measured to four significant figures the TLSER descriptors and coefficients are similarly reported.

The combined sets were those for which ΔG_{a} was available. The enthalpy change, ΔH_{a}, often used as the measure of gas
phase acidity, was not readily available for the acids and silanols. The hydrocarbon set (ref. 33) used the activation energy for the MgO -catalysed protium and deuterium exchange between $\mathrm{XH}(\mathrm{g})$ and $\mathrm{D}_{2}(\mathrm{~g})$. This was included in this paper because there is a strong linear correlation of activation enthalpy, $\Delta H^{ \pm}=E_{\text {ac }}-2 R T$, with ΔH_{a} for a subset of compounds for which the experimental values were known.

Discussion

Examination of the tables shows the general trends and good correlations ($0.823<R<0.994$) generated by the TLSER descriptors; the combined, hence larger, sets have R of the order of 0.970 or higher. Not all terms are significant for the various compound sets. The retained terms are significant at the 0.95 level or higher; most are significant beyond the 0.99 level. Standard error of the estimated (SD) values are near the estimated experimental uncertainties, typically $\pm 2-8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Some correlations for individual classes have SD values around a third to a half of the upper value. This could mean that the equations are artifacts. However, that would seem to be precluded since none are lower than $\pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the coefficients have strong statistical significance.

Table 5 Acids, alcohols, anilines and silanols with descriptors

Compound	$V_{\text {me }}$	π_{1}	ε_{B}	q_{-}	$\varepsilon_{\text {A }}$	q_{+}	$\Delta G_{\text {a }}$
Carboxylic acids ${ }^{\text {a }}$							
ethanoic	0.5949	0.0843	0.1298	0.3650	0.1696	0.2161	1429
propanoic	0.7067	0.0970	0.1304	0.3665	0.1693	0.2161	1424
butanoic	0.8923	0.0986	0.1305	0.3648	0.1691	0.2151	1420
cyclopropylmethanoic	0.7917	0.1043	0.1313	0.3655	0.1690	0.2151	1420
cyclopropylethanoic	0.9772	0.1039	0.1332	0.3612	0.1689	0.2151	1418
(2-CH3 -cyclopropyl)methanoic	0.9775	0.1047	0.1321	0.3688	0.1699	0.2176	1418
$3-\mathrm{CH}_{3}$-but-2-enoic	0.9945	0.1079	0.1419	0.3664	0.1787	0.2147	1415
(E)-pent-2-enoic	0.9935	0.1081	0.1402	0.3787	0.1796	0.2157	1415
methanoic	0.3561	0.0874	0.1282	0.3695	0.1685	0.2161	1415
3,3-($\left.\mathrm{CH}_{3}\right)_{2}$-butanoic	1.2330	0.1011	0.1311	0.3648	0.1692	0.2160	1415
$(E) /(Z)$ (mix)-but-2-enoic ${ }^{e}$	0.8102	0.1088	0.1403	0.3775	0.1797	0.2156	1411
pent-4-enoic	0.9901	0.1054	0.1434	0.3661	0.1692	0.2155	1411
prop-2-enoic	0.6421	0.1029	0.1376	0.3794	0.1787	0.2154	1411
(1-CH3 -cyclopropyl)ethanoic	0.9775	0.1047	0.1321	0.3688	0.1699	0.2176	1410
2-CH3-prop-2-enoic	1.7968	0.1078	0.1402	0.3663	0.1769	0.2160	1407
(bicyclo[1.1.1]pentyl)methanoic	1.0400	0.1098	0.1326	0.3662	0.1694	0.2145	1405
$\mathrm{CH}_{3} \mathrm{O}$-ethanoic	0.7841	0.0991	0.1308	0.3307	0.1697	0.2176	1402
3,3-($\left.\mathrm{CH}_{3}\right)_{2}$-pent-2-enoic	1.3478	0.1040	0.1440	0.3662	0.1692	0.2157	1402
phenylethanoic	1.2624	0.1208	0.1483	0.3011	0.1830	0.1815	1398
4-oxopentanoic	1.0617	0.1011	0.1360	0.3690	0.1736	0.2171	1396
fluoroethanoic	0.5631	0.0908	0.1278	0.3293	0.1733	0.2231	1385
4-F ${ }_{3}$-butanoic	0.9895	0.0890	0.1253	0.3599	0.1742	0.2226	1379
chloroethanoic	0.6801	0.1014	0.1267	0.3262	0.1751	0.2231	1376
bromoethanoic	0.7372	0.1094	0.1282	0.3314	0.1783	0.2217	1370
2-oxopropanoic	0.7030	0.1003	0.1340	0.3424	0.1786	0.2213	1366
difluoroethanoic	0.5936	0.0871	0.1242	0.3265	0.1773	0.2277	1354
dichloroethanoic	0.8278	0.1090	0.1242	0.3300	0.1846	0.2285	1347
Alcohols and phenols ${ }^{\text {b }}$							
methanol	0.3647	0.0860	0.1314	0.3291	0.1402	0.1803	1559
	0.5423	0.0927	0.1326	0.3235	0.1429	0.1800	1551
propanol ${ }^{d}$	0.7237	0.0955	0.1326	0.3246	0.1442	0.1803	1543
butanol ${ }^{\text {a }}$	0.9082	0.0969	0.1326	0.3249	0.1449	0.1804	1541
2-propanol	0.7148	0.0962	0.1335	0.3197	0.1448	0.1780	1538
3-CH3-butanol	1.0752	0.0991	0.1326	0.3254	0.1461	0.1802	1535
2-CH3-propanol	0.9106	0.0964	0.1327	0.3245	0.1457	0.1807	1535
2- CH_{3}-propan-2-ol	0.8929	0.0976	0.1342	0.3182	0.1442	0.1765	1534
2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-butan-4-ol ${ }^{\text {a }}$	1.2477	0.0998	0.1337	0.3234	0.1463	0.1783	1531
$\mathrm{CH}_{3} \mathrm{O}$-ethanol	0.8028	0.0966	0.1354	0.3545	0.1462	0.1843	1530
2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-propanol	1.0673	0.0995	0.1327	0.3257	0.1458	0.1820	1528
2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-butan-3-ol ${ }^{\text {a }}$	1.2565	0.0993	0.1338	0.3240	0.1478	0.1798	1525
3,3-($\left.\mathrm{CH}_{3}\right)_{2}$-butan-2-ol	1.2512	0.0997	0.1338	0.3245	0.1481	0.1803	1523
phenylmethanold	1.0933	0.1190	0.1527	0.3252	0.1758	0.1825	1520
2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-pentanol	1.4055	0.1022	0.1355	0.3271	0.1486	0.1807	1519
2,2,4-($\left.\mathrm{CH}_{3}\right)_{3}$-pentanol	1.6299	0.0995	0.1359	0.3237	0.1496	0.1795	1514
2,2,4,4-($\left.\mathrm{CH}_{3}\right)_{4}$-pentanol	1.7828	0.1013	0.1364	0.3298	0.1496	0.1813	1509
2,2-F ${ }_{2}$-ethanol	0.6115	0.0835	0.1259	0.3057	0.1545	0.1924	1505
2,2,2-F ${ }_{3}$-ethanol	0.6464	0.0782	0.1212	0.3096	0.1644	0.2035	1493
4-CH3-phenol	1.0874	0.1230	0.1572	0.2496	0.1764	0.1936	1446
phenol	0.9156	0.1222	0.1567	0.2481	0.1756	$0.192{ }^{\text {8 }}$	1441

One (or both) of the acidity descriptors, ε_{A} and q_{+}, is (are) included in each correlation (with one exception in Table 2, discussed later) as would be expected. Furthermore their signs are negative, indicating that increasing acidity decreases ΔH_{a}, as it should. The sign on the q_{-}terms are positive indicating increasing basicity increases ΔH_{a}, again, as expected.

The $\varepsilon_{\mathbf{B}}$ descriptor occurs in the hydrocarbon case, the acid, alcohol and aniline case and one of the combined ($N=72$) sets of acids, alcohols, silanols and anilines. Its sign is positive, in the combined case sets. Again this is physically consistent. However, for the hydrocarbons the sign is negative. Ref. 33 suggests an explanation since this actually involves $E_{\text {ac }}$, the activation energy, for a deuterium exchange process over a solid catalyst, MgO . The bifunctionality of the MgO permits transition states involving $\mathrm{O}-\mathrm{D}, \mathrm{O}-\mathrm{H}$ and $\mathrm{Mg}-\mathrm{R}$. Increasing basicity, ε_{B}, would favour lowering of the activation energy. Another aspect of the hydrocarbons is that since they lack a 'real' basic site they must use the molecular orbital basicity. The hydrocarbon cases in Tables 2 and 3 have ε_{B} as the only
significant parameter. This could mean the HBAB (covalent electron donating functionality) of the hydrocarbon can interact with the acidity function of the MgO as discussed in the previous paragraph and account for most of the variance.
The volume terms are significant, with negative signs, for acids and alcohols. This might be associated with an inductive effect which is expected to be larger for larger molecules.
For the combined acid and alcohol set a statistically acceptable correlation equation was obtained involving the polarizability index (along with $V_{\mathrm{mc}}, \varepsilon_{\mathrm{A}}$ and q_{+}) with a negative sign; again, this is physically reasonable. The detailed equation is not reported since it had lower R and higher SD values. Of the two acid and alcohol correlations in Table 4 the second is better than the first because of the smaller VIF values indicating smaller cross correlation of the coefficients. When alcohols, silanols and anilines are combined π_{1} is found to be significant (along with ε_{A} and q_{+}) but with a positive sign; but, it was not significant for alcohols and silanols combined. Inclusion of the anilines, quite polarizable, introduces a wider

Table 5 (continued)

Compound	$V_{\text {mc }}$	$\pi{ }_{1}$	ε_{B}	q	$\varepsilon_{\text {A }}$	$q+$	ΔG_{a}
Anilines ${ }^{\text {b }}$							
$4-\mathrm{CH}_{3}$	1.1433	0.1226	0.1542	0.2220	0.1775	0.1012	1510
4-CH30	1.2219	0.1240	0.1569	0.2848	p. 1769	0.0956	1509
$3-\mathrm{CH}_{3}$	1.1395	0.1244	0.1581	0.2299	0.1758	0.1146	1508
aniline	0.9693	0.1245	0.1580	0.2279	0.1748	0.1133	1505
4-F	1.0026	0.1232	0.1568	0.2270	0.1793	0.1171	1499
2-F	1.0084	0.1217	0.1551	0.2319	0.1791	0.1208	1495
3-CH3S	1.3307	0.1177	0.1503	0.2226	0.1806	0.0998	1492
3-F	1.0041	0.1222	0.1551	0.2322	0.1791	0.1210	1489
2,4-F ${ }_{2}$	1.0294	0.1223	0.1546	0.2263	0.1832	0.1318	1486
$4-\mathrm{Cl}$	1.1304	0.1271	0.1557	0.2309	0.1795	0.1202	1486
$3-\mathrm{Cl}$	1.1243	0.1272	0.1549	0.2289	0.1794	0.1192	1480
$3-\mathrm{CF}_{3}$	1.2365	0.1116	0.1453	0.2339	0.1857	0.1025	1472
$4-\mathrm{CF}_{3}$	1.2374	0.1150	0.1507	0.2367	0.1841	0.1291	1457
Silanols ${ }^{\text {c }}$							
$\left(\mathrm{CH}_{3}\right) \mathrm{H}_{2} \mathrm{SiOH}$	0.6459	0.0821	0.1348	0.6562	0.1531	0.2026	1477
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HSiOH}$	0.8213	0.0864	0.1362	0.6371	p. 1547	0.1988	1477
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}$	1.0180	0.0959	0.1542	0.7351	0.1758	0.2315	1477
$\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{SiOH}$	1.1531	0.0937	0.1366	0.6253	0.1758	0.1960	1477
$\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SiOH}$	1.3324	0.0953	0.1379	0.6261	0.1560	0.1971	1477
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{SiOH}$	0.5351	0.0951	0.1385	0.6265	0.1560	0.1977	1477
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiOH}$	1.5259	0.1109	0.1522	0.6286	0.1759	0.1960	1477
$\mathrm{H}_{3} \mathrm{SiOH}$	0.4808	0.0719	0.1346	0.6699	0.1518	0.2046	1473
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{HSiOH}$	1.3663	0.1106	0.1522	0.6431	0.1761	0.1992	1464
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{H}_{2} \mathrm{SiOH}$	1.2054	0.1098	0.1525	0.6648	0.1758	0.2048	1456
F(CH3) ${ }_{2} \mathrm{SiOH}$	0.8486	0.0803	0.1334	0.6550	0.1557	0.2105	1456
$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{SiOH}$	1.1702	0.0876	0.1523	0.6839	0.1577	0.2157	1456
$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{SiOH}$	1.2201	0.0887	0.1333	0.6807	0.1629	0.2210	1456
$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{HSiOH}$	0.9962	0.0853	0.1338	0.6794	0.1606	0.2164	1456
$\mathrm{F}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{SiOH}$	0.7015	0.0667	0.1187	0.6717	0.1623	0.2229	1423
$\mathrm{F}_{3} \mathrm{SiOH}$	0.5653	0.0441	0.1122	0.6776	0.1636	0.2412	1393
$\mathrm{Cl}_{3} \mathrm{SiOH}$	0.9309	0.1010	0.1128	0.6469	0.1968	0.2645	1326

${ }^{a}$ Ref. 34. ${ }^{b}$ Ref. 35. ${ }^{c}$ Ref. 36. ${ }^{d}$ Ref. 37. ${ }^{e}$ Parameters for E, see discussion.
range of π_{1}; however, there is no ready explanation for the sign. More importantly, the combined set of acids, alcohols, anilines and silanols gave a correlation with only four outliers out of 78 compounds when π_{1} (along with $q_{-}, \varepsilon_{\mathrm{A}}$, and q_{+}) was included; again, it had a positive coefficient. The other combined case reported in Table 4 for the four classes of compounds had six outliers.

Table 5 includes data for what is labelled as $(E) /(Z)$-but-2enoic acid. That was the mixture for which the value was obtained. The descriptors listed here are for the E form; there is only a small difference in the parameters for the two isomers. Either set of parameters gave essentially the same correlation for the combined cases of acids, alcohols, anilines and silanols with the R value being identical to three digits.

Tables 2 and 3 show that the individual classes of compounds fall into two categories. Those with q_{+}significant, the acids, alcohols and silanols, and those with q_{+}not significant, the anilines, oximes, hydrocarbons and small hydrocarbons. (The one exception is the hydrocarbons in Tables 2 and 3 for which $\varepsilon_{\mathbf{B}}$ is the only significant parameter; it was discussed earlier.) The first type have OH groups and, thus, a readily identifiable acidic proton. The second type, except for the oximes, do not have readily identifiable acidic protons. A possible explanation is the small oxime sample size, seven, with four of these being α-ketoaldoximes.

Comparison of the individual correlations (Tables 2 and 3) shows other physically reasonable results. The expected acidity order, alcohols < acids < silanols, is consistent with the order, alcohols $>$ acids $>$ silanols, of the coefficient, d of the q_{-} descriptor (basicity). Decreasing d means increasing acidity. On the molecular level Table 5 shows that the oxygens are more negative $\left(q_{-}\right)$in the silanols than in the acids; charge separation can be accommodated better by Si than C . Corresponding
observations result from the order of the coefficient, f, of the q_{+} descriptor (acidity). Smaller f values (algebraically) indicate greater acidity.

Outliers.-Methoxyethanol was the only outlier in the alcohols; however, if the OH oxygen charge is used instead of that of the more negative $\mathrm{CH}_{3} \mathrm{O}$ oxygen, methoxyethanol is no longer an outlier and R increases to 0.992 . Trimethylsilanol is the only outlier for that class; its q_{+}value needs to be larger and q_{-}smaller to provide a better fit. Benzene is the outlier in the hydrocarbon set; its calculated value is smaller than the experimental one. If its ε_{B} [$E(\mathrm{HOMO})$ magnitude] value were smaller there would be better agreement with experiment. In fact, based on ε_{B} its calculated value is close to that of thiophene while its experimental value is more than twice as large. Ethene was the outlier for the small hydrocarbons composed of propenes, ethenes and cyclopropanes. This was a small set, only eight; ethene is the smallest member. Larger sets of related hydrocarbons might give different results. The results for the small sets, oximes (seven) and small hydrocarbons (eight), are included to give some indication as to their correlation; hence they are far from being definitive.

There is one common outlier, $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, in the combined sets. When anilines are not included, the calculated value is too small and q_{+}contributes most to the equation. If it were smaller, the calculated value would be closer to that for experiment for this alcohol. The three fluorines on the alcohol could explain the larger q_{+}value; it is larger than for ethanol. When anilines are combined, the calculated value is too large and the ε 's contribute most. Again the presence of the fluorine seems to account for this; relative to ethanol, it increases the ε_{B} and lowers ε_{A}, thus making the calculated value too large. MNDO is noted for its inability to handle polyfluorinated

Table $6 \Delta G_{q}$ Values for combined set of 72 acids, alcohols, anilines, and silanols in Table 4

Compound	Expmt.	Calc.	Residual	Compound	Expmt.	Calc.	Residual
Carboxylic acids							
ethanoic	1429	1413	15	2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-propanol	1528	1527	1
propanoic	1424	1415	9	2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-butan-3-ol	1525	1523	2
butanoic	1420	1417	3	3,3-($\left.\mathrm{CH}_{3}\right)_{2}$-butan-2-ol	1523	1522	1
(cyclopropyl)methanoic	1420	1419	2	2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-pentanol	1519	1522	-3
(cyclopropyl)ethanoic	1418	1421	-3	2,2,4-($\left.\mathrm{CH}_{3}\right)_{3}$-pentanol	1514	1520	-6
(2-CH3-cyclopropyl)methanoic	1418	1414	4	2,2,4,4-($\left.\mathrm{CH}_{3}\right)_{4}$-pentanol	1509	1519	-1
3-CH3-but-2-enoic	1415	1397	18	2,2-F ${ }_{2}$-ethanol	1505	1481	25
(E)-pent-2-enoic	1415	1391	24	4- CH_{3}-phenol	1446	1441	6
methanoic	1415	1415	-0	phenol	1441	1444	-2
3,3-($\left.\mathrm{CH}_{3}\right)_{2}$-butanoic	1415	1416	-1	phen			
(E)/(Z)-but-2-enoic	1411	1391	20	Anilines			
pent-4-enoic	1411	1431	-20	$4-\mathrm{CH}_{3}$	1510	1511	-0
prop-2-enoic	1411	1392	19	$4-\mathrm{CH}_{3} \mathrm{O}$	1509	1520	-11
(1-CH3 ${ }^{\text {-cyclopropyl) methanoic }}$	1410	1414	-3	$3-\mathrm{CH}_{3}$	1507	1510	-2
2-CH3-prop-2-enoic	1407	1401	6	aniline	1505	1514	-9
(bicyclo[1.1.1]pentyl)methanoic	1405	1419	-14	4-F	1499	1494	5
$\mathrm{CH}_{3} \mathrm{O}$-ethanoic	1402	1413	-11	2-F	1495	1490	5
3,3-($\left.\mathrm{CH}_{3}\right)_{2}$-pent-2-enoic	1402	1432	-30	$3-\mathrm{CH}_{3} \mathrm{~S}$	1492	1497	-4
phenylethanoic	1398	1418	-20	3-F	1489	1490	-1
4-oxopentanoic	1396	1406	-10	2,4-F ${ }_{2}$	1486	1466	20
fluoroethanoic	1385	1393	-8	$4-\mathrm{Cl}$	1486	1490	-3
4,4,4-F ${ }_{3}$-butanoic	1379	1387	-8	$3-\mathrm{Cl}$	1480	1490	-10
chloroethanoic	1376	1385	-9	$3-\mathrm{CF}_{3}$	1472	1471	1
bromoethanoic	1370	1377	-7	$4-\mathrm{CF}_{3}$	1457	1461	-3
2-oxopropanoic	1366	1383	-17				
difluoroethanoic	1354	1370	-16	Silanols			
dichloroethanoic	1347	1345	2	$\mathrm{CH}_{3} \mathrm{H}_{2} \mathrm{SiOH}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HSiOH}$	1477 1477	1487 1487	$\begin{aligned} & -10 \\ & -10 \end{aligned}$
Alcohols and phenols				${ }_{\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SiOH}}$	1477	14886	-10 -9
methanol	1559	1546	13	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{SiOH}$	1477	1484	-7
ethanol	1551	1539	12	$\mathrm{H}_{3} \mathrm{SiOH}$	1473	1490	-17
propanol	1543	1534	9	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{HSiOH}$	1464	1431	33
butanol	1541	1532	10	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{H}_{2} \mathrm{SiOH}$	1456	1428	28
2-propanol	1538	1535	3	F(CH3) $)_{2} \mathrm{SiOH}$	1456	1470	-14
2-CH3-propanol	1535	1529	6	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{SiOH}$	1456	1481	-25
3-CH3-butan-1-ol	1535	1528	8	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{SiOH}$	1456	1436	20
2- CH_{3}-propan-2-ol	1534	1539	-5	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{HSiOH}$	1456	1449	7
2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-butan-4-ol	1531	1530	1	$\mathrm{F}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{SiOH}$	1423	1420	3
$\mathrm{CH}_{3} \mathrm{O}$-ethanol	1530	1527	3	$\mathrm{F}_{3} \mathrm{SiOH}$	1393	1393	1

Table 7 Outliers for combined sets in Table 4

System	Compounds
Acids + alcohols	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$
Acids + alcohols + silanols	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}, \mathrm{Cl}_{3} \mathrm{SiOH}$
Acids + alcohols + anilines	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
Alcohols + silanols + anilines	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}$, $\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{SiOH},\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SiOH}$
Acids + alcohols + silanols + anilines	$\begin{aligned} & \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}, \\ & \mathrm{Cl}_{3} \mathrm{SiOH},\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{SiOH}, \\ & \left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SiOH} \end{aligned}$
Acids + alcohols + silanols + anilines	$\begin{aligned} & \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}, \\ & \left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{SiOH} \end{aligned}$

species. It is of interest to note that diffuoroethanol is not an outlier.

The acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$, is an outlier when the acids, alcohols and silanols are combined; its calculated value is too high. A larger q_{+}, the most significant term, would bring the calculated value into line. In this connection, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$, is an outlier for combinations of three or more classes; calculated values are too high. Here at least two parameters make strong contributions so the interpretation is complicated. However, a
larger q_{+}would bring the calculated value in line. To a rough approximation the phenyl group seems to coincide with a smaller q_{+}than expected compared to the other members of the set.

Trimethylsilanol is an outlier in all correlations; calculated values are too large. It has the largest q_{-}value in the silanols, 0.735 ; this would contribute to a higher ΔG_{a} in three of the sets but not the others. (It should be noted that the formal charges on the Si are greater than one for the 18 silanols.) In the largest set, silanols with two methyls along with a methyl, ethyl or phenyl are outliers. Again, calculated values exceed the experimental. Their formal charges are less than that for trimethylsilanol; consequently, a general explanation for these outliers is not apparent. Trichlorosilanol is also an outlier in several cases. It has the largest q_{+}value; that is not the problem since it helps make ΔG_{a} smaller.

In general, the presence of an outlier can indicate that a different mechanism is involved. This could apply when a kinetic process is involved as is often the case in QSAR. However, that would not apply for a thermodynamic quantity. An error in the data could also explain an outlier. A possible explanation for an outlier when using computational descriptors could be inadequacies in the model used for molecular computations.

Conclusions

The TLSER descriptors provide good to very good correlation equations for the gas phase acidities for representative sets, including combinations, of acids, alcohols, silanols, anilines,

Table 8 Hydrocarbons, oximes and small hydrocarbons with descriptors

Compound	V_{mc}	π_{1}	$\varepsilon_{\text {B }}$	q_{-}	$\varepsilon_{\text {A }}$	q_{+}	$\Delta H_{\mathrm{a}}{ }^{\text {a }}$
Hydrocarbons ${ }^{\text {b }}$							
propane	0.6527	0.0957	0.1222	0.0346	0.1430	0.0048	78.12
2,2-($\left.\mathrm{CH}_{3}\right)_{2}$-propane	1.0015	0.0991	0.1244	0.1258	0.1429	-0.0069	73.14
2-(CH_{3})-butane	1.0120	0.0986	0.1254	0.0662	0.145	0.0156	72.55
ethane	0.4776	0.0909	0.1189	0.0071	0.1408	-0.0046	69.29
cyclohexane	1.0650	0.1054	0.1284	0.0111	0.1460	0.0059	64.89
cyclopentane	0.8926	0.1024	0.1249	0.0169	0.1461	0.0090	62.80
cyclobutane	0.7285	0.1005	0.1276	0.0340	0.1452	0.0170	60.29
cyclopropane	0.5584	0.1010	0.1313	0.0737	0.1502	0.0369	48.20
benzene	0.8463	0.1204	0.1517	0.0594	0.1744	0.0594	33.97
thiophene	0.7915	0.1200	0.1515	0.2576	0.2163	0.0953	14.18
2-(CH_{3})-toluene	1.2029	0.1196	0.1533	0.0798	0.1762	0.0604	8.03
4-(CH_{3})-toluene	1.1957	0.1262	0.1602	0.1097	0.1797	0.0565	4.94
3-(CH_{3})-toluene	1.2096	0.1192	0.1532	0.1055	0.1762	0.0593	4.10
toluene	1.0185	0.1208	0.1528	0.1007	0.1756	0.0810	3.89
ethylbenzene	1.1978	0.1190	0.1529	0.0826	0.1756	0.0602	0.54
2-($\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$-propane	1.3919	0.1158	0.1528	0.0727	0.1755	0.0611	0.08
Oximes,$\mathbf{X}$$\underset{\mathrm{Y}}{\mathrm{X}-\mathrm{C}(\mathrm{Y})}=\underset{\mathrm{N}-\mathrm{OH}^{\mathrm{c}}}{ }$							
$\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}^{\text {d }}$	0.7630	0.1068	0.1430	0.1687	0.1732	0.1636	1532
$\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{C}(\mathrm{O}) \quad \mathrm{H}^{\text {d }}$	0.5965	0.1043	0.1413	0.1716	0.1715	0.1628	1530
$\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O})_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}^{\text {d }}$	1.1435	0.1317	0.1539	0.1696	0.1816	0.1623	1477
$\mathrm{CH}_{3} \quad \mathrm{H}$	0.7468	0.1119	0.1357	0.2887	0.1823	0.1723	1430
$\mathrm{CH}_{3} \quad \mathrm{CH}_{3}$	1.1123	0.1070	0.1489	0.2581	0.1834	0.1734	1408
$\mathrm{C}_{6} \mathrm{H}_{5} \quad \mathrm{H}$	1.1750	0.1154	0.1436	0.7159	0.1818	0.2090	1387
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \quad \mathrm{H}$	1.2463	0.1232	0.1351	0.6694	0.1985	0.2134	1379
Small hydrocarbons ${ }^{e}$ cyclopropane	0.5586	0.1009	0.1313	0.0738	0.1502	0.0369	1724
ethene	0.4072	0.0952	0.1442	0.0799	0.1649	0.0400	1713
ethenol	0.4657	0.1022	0.1526	0.2598	0.1652	0.1872	1661
propene	0.5755	0.1027	0.1459	0.1290	0.1668	0.0524	1635
3-aminopropene	0.7050	0.1032	0.1461	0.2763	0.1674	0.0959	1632
propen-3-ol	0.6446	0.1018	0.1442	0.3211	0.1675	0.1790	1632
3-fluoropropene	0.6122	0.0973	0.1423	0.2433	0.1703	0.0578	1632
fluoroethene	0.4396	0.0916	0.1438	0.1913	0.1714	0.0740	1619

${ }^{a}$ The hydrocarbons (first set) use the activation energies for deuterium exchange instead of $\Delta H_{a}{ }^{b}$ Ref. 33. ${ }^{c}$ Ref. 41. ${ }^{d}$ Ref. 36. ${ }^{e}$ Ref. 37.
oximes and hydrocarbons. More importantly, the equations give physically meaningful interpretations. When these results are considered along with previous applications for biological, chemical and physical properties involving solute-solvent processes, the TLSER descriptors have been shown to be very useful for a wide range of applications.

Acknowledgements

L. Y. W. gratefully acknowledges the support of Dr. Adeny Schmidt, Dean, College of Arts and Sciences, La Sierra University and the US Army through contract number DAAD 05-92-W-0354.

References

1 S. Gupta, Chem. Rev., 1987, 87, 1183.
2 G. N. Burkhart, Nature (London), 1935, 17, 684.
3 L. P. Hammet, Chem. Rev., 1935, 17, 125.
4 L. P. Hammett, J. Am. Chem. Soc., 1937, 59, 125.
5 O. Exner, in Correlation Analysis of Chemical Data, ed. J. Shorter, Plenum Press, New York, 1988, p. 25.
6 C. Hansch, Acc. Chem. Res., 1969, B2, 232.
7 M. J. Kamlet, R. W. Taft and J.-L. M. Abboud, J. Am. Chem. Soc., 1977, 91, 8325.
8 I. A. Koppel and V. A. Palm, Advances in Linear Free Energy Relationships, eds. N. B. Chapman and J. Shorter, Plenum Press, London, 1972.
9 M. J. Kamlet, R. M. Doherty, M. H. Abraham and R. W. Taft, Quant. Struct.-Act. Relat., 1988, 7, 71.

10 M. H. Abraham, G. S. Whiting, R. Fuchs and E. J. Chambers, J. Chem. Soc., Perkin Trans. 2, 1990, 291.
11 M. J. Kamlet, R. W. Taft, G. R. Famini and R. M. Doherty, Acta Chem. Scand., 1987, 41, 589.
12 J. P. Hickey and D. R. Passino-Reader, Environ. Sci. Technol., 1991, 25, 1753.
13 J. J. Gajewski, J. Org. Chem., 1992, 57, 5500.
14 J. G. Kirkwood, J. Chem. Phys., 1934, 2, 351; L. Onsager, J. Am. Chem. Soc., 1936, 58, 1486.
15 J. H. Hildebrand, J. M. Prausnitz and R. L. Scott, Regular and Related Solutions, Van Nostrand-Reinhold, Princeton, 1970.
16 B. G. Cox, G. R. Hedwig, A. J. Parker and D. W. Watts, Aust. J. Chem., 1974, 27, 477; Y. Marcus, Pure Appl. Chem., 1983, 55, 977.

17 D. F. V. Lewis, J. Comput. Chem., 1987, 8, 1084.
18 T. Brinck, J. S. Murray and P. Politzer, Molecular Physics, in the press.
19 J. S. Murray and P. Politzer, J. Chem. Res. (S), 1992, 110.
20 G. H. Loew, M. Poulsen, E. Kirkjian, J. Ferrell, B. S. Sudhindra and M. Rebagliati, Environ. Health Perspect., 1985, 61, 69.

21 L. Pedersen, Environ. Health Perspect., 1985, 61, 185.
22 M. Chastrette, M. Rajzmann, M. Chanon and K. F. Purcell, J. Am. Chem. Soc., 1985, 107, 1.
23 D. F. V. Lewis, in Progress in Drug Metabollism, eds. J. W. Bridges and L. F. Chasseaud, John Wiley, London, 1990, p. 205.
24 L. B. Kier and L. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press, Letchworth, 1986.
25 M. G. Ford and D. J. Livingstone, Quant. Struct.-Adv. Relat., 1990,9, 107.

26 G. R. Famini, Using Theoretical Descriptors in Quantitative Structure Activity Relationships V. CRDEC-TR-085, US Army Chemical, Research, Development and Engineering Center, Aberdeen Proving Ground, MD, 1989.

27 L. Y. Wilson and G. R. Famini, J. Med. Chem., 1991, 34, 1668.
28 G. R. Famini, R. J. Kassel, J. W. King and L. Y. Wilson, Quant. Struct.-Act. Relat., 1991, 10, 344.
29 G. R. Famini, W. P. Famini, W. P. Ashman, A. P. Mickiewicz and L. Y. Wilson, Quant. Struct.-Act. Relat., 1992, 11, 162.

30 G. R. Famini, C. E. Penski and L. Y. Wilson, J. Phys. Org. Chem., 1992, 5, 395.
31 R. W. Taft, personal communication.
32 M. R. F. Siggel, M. L. Crenshaw, J. Holloway and M. S. Banna, J. Electron Spectrosc. Relat. Phenom., 1990, 51, 1.
33 M. F. Hoq and K. J. Klabunde in Acid-Base Catal., Proc. Int. Symp., ed. K. Tanabe, Kodansha, Tokyo, 1988.
34 M. S. Gordon, L. P. Davis, L. W. Burggraf and R. Damrauer, J. Am. Chem. Soc., 1986, 108, 7890.
35 B. J. Smith and L. Radom, J. Phys. Chem., 1991, 95, 1059.
36 G. Bouchoux, P. Jaudon, M. Decouzon, J.-F. Gal and P.-C. Mria, J. Phys. Org. Chem., 1991, 4, 285.
37 G. D. Dahlke and S. R. Kass, J. Am. Chem. Soc., 1991, 113, 5566.

38 S. T. Graul, M. E. Schnute and R. R. Squires, Int. J. Mass Spectrom. Ion Processes, 1990, 96, 181.

39 J. E. Bartmess, J. A. Scott and R. T. McIver, Jr., J. Am. Chem. Soc., 1979, 101, 6046.
40 R. Damrauer, R. Simon and M. Krempp, J. Am. Chem. Soc., 1991, 113, 4431.
41 S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, Suppl., 1988, 17.
42 M. J. K. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899.
43 J. J. P. Stewart, Mopac Manual FJSRL-TR-88-PP7, Frank J. Seiler Research Laboratory, US Air Force Academy, Colorado Springs, CO, 1988.
44 A. J. Hopfinger, J. Am. Chem. Soc., 1980, 102, 7126.
45 J. M. Leornard and G. R. Famini, A User's Guide to the Molecular Modeling Analysis and Display System, CRDEC-TR-030, US Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD, 1989.
46 D. A. Belesley, E. Kuh and R. E. Welsh, Regression Diagnostics, Wiley, New York, 1980.

Paper 2/06394H
Received 30th November 1992
Accepted 11 th January 1993

